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THE INFLUENCE OF TIP MASS OFFSET ON

THE STABILITY OF BECK'S COLUMN

In this paper, the stability of a slender cantilever carrying a tip -
mass at its free end and subjected there to a follower force is investigated.
The centroid of the tip mass is offset from the free end of the beam and is
located along its extended axis. The associated boundary value problem is
solved and the exact frequency equation is derived. The frequency equation
is solved numerically for the case in which both the beam and the tip mass
have circular cross sections. The numerical computations indicate that the
system loses stability only through flutter. The variation of the values
of the critical flutter load Qer with the tip mass offset parameter £ is
shown graphically for four values of the tip mass density to beam density
ratio p. These calculations reveal that, at sufficiently small values of
& ch decreases sharply for increasing values of p. For values of £
sufficiently large, however, the situation is reversed as the value of ch
increases with increasing p.

1. INTRODUCTION

An elastic cantilever of length £ and density p that is subjected to a
compressive follower force of magnitude P applied at its free end is known
as Beck's column [1]. Pfluger [2] has investigated the influence of the
transverse inertia of a tip mass on the value of the critical flutter load
of Beck's column, and Walter and Levinson [3] and Anderson [4] have con-
sidered closely related problems with the inclusion of the influence of
the rotatory inertia of the tip mass. If the rotatory inertia of the tip
mass is negligible, its transverse inertia generally tends to reduce the

value of the critical flutter load. However, if the mass of the column is
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sufficiently small relative to that of the body attached at its tip, the
value of the critical flutter load can be slightly greater than Beck's
value of P . = 20.05 EI/%%.

In all the studies mentioned above, it was assumed that the mass of the
attached body was concentrated at the free end of the column. As a further
step in studying the influence of a tip mass on the stability of Beck's
column, one may consider the system in which the centroid of the tip mass is
offset from the point of attachment along the extended axis of the column.
Only recently the natural frequencies of free vibration of a uniform unloaded
cantilever carrying such a tip mass have been reported by Bhat and Wagner (5],
Bhat and Kulkarni [6], and Flax [7].

: 2. STATEMENT OF THE PROBLEM

The differential equation of motion and the boundary conditions for the

system consisting of Beck's column carrying at its free end a tip mass whose

centroid is offset from the point of attachment (see Figure 1) are

4 2 2
513__‘i+p?__l’.+p,\§__"i=o, 0<xy<2, (1)
xp* exy? at?
w
W(O)t) ol =Ty (o»t) =0, (2)
axl
2 3 2
1 3Y (g,) = - (3 + me?) 2 (2,0 - m ¥ 2,1y , (3)
ax,? 9x,9t? at?
3 2 3
BT S X che) X gty + e 25 (11 , (4)
3x13 atz aXIBtz

where w(xy,t) denotes the transverse deflection of the column, EI its

flexural rigidity, P is the magnitude of the applied force, p the density
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of the beam, A its cross-sectional area, % its length, Jy the moment of

inertia of the tip mass, and ¢ the distance from the end of the beam to the
centroid of the tip mass. If one sets ¢ = 0 in equations (3) and (4), then
the given boundary value problem reduces to the problem that is the adjoiﬁt

of the one solved in reference [3], whereas, if both c and Jy are equated

to zero, Pfluger's problem [2] is obtained.
! It is expedient to express equations (1) to (4) in dimensionless form
by making the changes of independent variables Xy = 2x, 10 < x < 1,°t = gr,

and by introducing the following parameters:

| v 2 J

i [ gz = p;”'_’ Q = .P_Q'_ 5 ‘Y = .._.0__’ u = -L' a = E = (5)
; El EI pAL? pAL ) !
!

As a consequence of these changes, equations (1) to (4) can now be expressed

as follows:
W'+ QW + W =0, g sy, U<, (6)
{ w(0,t) = w'(0,T) =0, (7
: WI(1,T) + (v + wad)u'(1,T) + waw(l,T) = 0, ()
F w" (1,7) - ww(1,T) - pow'(l,T) = 0, (9)

where primes and dots denote derivatives with respect to x and T, respectively.
3. THE EXACT SOLUTION

The solution of the partial differential equation (6) is next assumed in ;

the form

wix,T) = y(x)el®T, (10)

B ar o . ek

1/2

where i = (-1) and a denotes the dimensionless natural frequency of

vibration of the beam. Substitution of equation (10) into equations (6) to : %

(9) yields the following non-self-adjoint eigenvalue problem:
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y"™x) + @"(x) - w'y(x) =0, 0<xc<l1, (11)
and

y(0) = y'(0) =0 (12)

y'(1) - w?(y + ua?)y' (1) - wow’y(1) = 0, (13)

y" (1) + ww?y(1) + pow?y'(1) =0 .- (14)

E It can be verified that the solution of equation (11) has the form

’% y(x) = A} coshjx + Ay sinkjx + Az coshAyx + A, sinhiox , (15)
i where f

‘} A, o (BN « wHY? - ("2, aex1,2. (16)
>i ? Substitution of equation (15) into the boundary conditions in equations (12) é
! 1

to (14) yields the following system of homogeneous algebraic equations:

4
1 a=Ko a0, §a=1.234 a7
k=1 jk7k
where
i a;; = 1, 4, = 0, a7 = 1, a4 = 0,
P s ARk gt Gy
£ a1 = -(A,2 + w?ua)cosry + A w?(y + pa?)sin
: 31 1 B ot 1’
é ag, = -(Xlz + wua)sind; - Almz(y + wa®)cosiy,
: a7 = (A2 - w?pa)coshr, - Aw?(y + pa?)sinh)
33 = Wy Lt g B L i
E azy = (Azz - wzua)sinhkz - Azwz(y + uaz)coshkz,
E | ay = AI(AIZ - mzua)sink1 + w cosi,, 1
{
i
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ay, = -ll(klz - w’ua)cost; + w’u sindy,

345 = Aa(A,% + w*ua)sinhl, + w?u cosh),,

agq = AZ(AZZ + wzua)cosh)\2 + w2y sinh}, .
The system of equations (17) will have a non-trivial solution if and
only if the determinant of the coefficient matrix vanishes, i.e.,
det(ajk) =0 .
Expansion of this determinant yields the frequency equation

Q% + 2w? + 2uyw* - w [Qwluy - 1) + pa(Q? + 4w*)]sin); sinh); -
L ORI P 1 (TP P A ua?)]sind; cosh), +
+ wkl(klz + AZZ)[u - Azz(y + uaz)]cos)\1 sinh}, +
+ 202(1 - uymz)cosxl coshi, = 0. (18)

4. NUMERICAL RESULTS
The objective of the numerical computations is to determine the depen-
dence of the critical load parameter Q.y on the parameters a, u, and Yy, which
are inter-dependent. Hence, it is necessary to examine these quantities
somewhat more closely. The moment of inertia parameter J, is defined by

Jg = {r(xlz + zzz)dm, dm = podT, (19)

where T denotes the volume of the tip mass and o its density. The 212,25 -
coordinate axes have their origin at the centroid of the tip mass as shown
in Figure 2. Since dt = dzldzzdzs, one has, under the assumption that the

tip mass is a prismatic solid whose generators are parallel to the z,-axis,
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2
Jo = 3.pocj:R (c? + Szzz)dzzdzs, (20)

where A0 denotes the cross-sectional area of the tip mass. To proceed
further, one must assume something about the geometry of the beam and of the
tip mass. For the sake of being specific, suppose that the tip mass and
beam have circular-cross sections of radius a and b, respectively, where it

will be hypothesized that a > b. Thus, it follows from equation (20) that

Jg = % poCa (3a% + 4c?) . (21)

In addition, for the beam of circular cross-section, it may be verified that
2 Tou
A = b2, it (22)

Therefore, in view of equations (21), (22), and m = Zpowcaz, one finds

from equation (5)

Zpoazc pocaz(Sa2 + 4c?)
= s Y= (23)
plb? 6pb22}

M

Clearly, for a beam of given dimensions and density, the values of u and Yy
can be changed by varying a, c, an& o either together or independently.
However, because the essentially new parameter here is c, let it be supposed
that Py and a are held fixed throughout a given sequence of computations
while ¢ is varied. Thus, the objective of the present numerical computations
is to determine ch as a function of the ratio £ = 2¢/%, which is the ratio
of the length of the tip mass to the length of the beam. Hence, one has,

in place of equation (23),
e, waD@&u, vl (24)
T pE 12 X

where s = a/%.




Suppose further that, again for the purpose of being specific, b/2 = 1/20

and a/% = 1/10, so that a/b = 2. Then equation (24) becomes
a=E/2, w=dpE, Y= 1PE(E?+ 3/100), (25)
where p = pO/p. Upon using equation (25), equation (18) is now solved

numerically for the critical load ch as a function of the tip mass length
parameter £ for p = 1/10, 1/2, 1, and 2. The numerical procedure consists
of selecting a value of Q and computing the corresponding values of the
frequencies w for the first two modes of vibration. The value of Q is
successively increased from zero until the first and second frequencies

coalesce at the critical value, Q As long as Q < ch, these frequencies

cxr*

are real numbers, but for Q > ch they are complex conjugate numbers. In

the present case, loss of stability through divergence is not possible. The

onset of flutter is signaled at Q = ch. The results of these numerical

computations are shown in Figure 3, where the variation of ch/‘rr2 has been

plotted versus £ over the range 0 < £ < 1 for the four stated values of p.
This figure reveals that, for the values of p considered, the value of

ch decreases monotonically with increasing £ on the interval 0 < £ < 1.

Moreover, the value of ch initially decreases rapidly from Beck's value

of ch = 2.031n2 as £ increases from zero. Indeed, at least for sufficiently

small values of £, the rate of decrease of Qor increases as the density

ratio p increases, i.e., the initial slope of the tangent to the curve in

the chi-plane becomes increasingly negative as the value of £ is increased.

As the value of £ is further increased, the slope of the tangent to a given

chi-curve eventually tends to increase over the range of £ considered.

Therefore, for a given, sufficiently small value of £, the critical load




decreases as p is increased, but for a given sufficiently large value of p

the critical load increases as p is augmented.
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! | Figure 3. Variation of Qc,‘/rr2 versus & for four

values of p. i
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